

Nanofluidics and electrokinetics

Anne-Laure Biance

Université Claude Bernard Université Claude Bernard

Content

- 1) Introduction
- 2) Mass transport
- 3) Electrokinetics
- 4) Concentration gradients
- 5) Recent issues

Content

1) Introduction

- 2) Mass transport
- 3) Electrokinetics
- 4) Concentration gradients
- 5) Recent issues

Nanofluidics:

fluid flows in channels with a least one nanometric dimension

(Here: fluid = water / nanometric dimension = 1 to 500 nm)

From soils...

SEM picture of the soil of a kaolin mine in middle Georgia. http://clay.uga.edu/courses/8550/DBK.html

Figure 9. SEM and secondary electron images. Matrix without fibers.

Gypsum

... to living cells.

 $\alpha\text{-h}\acute{e}molysine$

aquaporines

Mechanosensitive channels...

What is new?

• New synthetic systems: zeolites, imogolytes, nanotubes, nanofabrication

 New tools for study: optical and electronic microscopes, electrical detection, surface force apparatus, MD simulations.

1) Introduction

Gravelle S et al. The Journal of Chemical Physics 2014; 141: 18C526.

Patch-clamp Neher and Sakmann 1976

New applications

New applications

- Bio-analysis with single molecule resolution
- Specific hydrodynamic transport (super-lubricity)
- Specific ionic transport
- Applications in energy conversion

New applications

Filtering: Giant permeability CNT membranes

Holt et al Science 2006

Diagnosis: Concentration polarization

Kim et al., PRL 2007 Son et al., BioChip J. 2016

×	nanopo	prous junction —	
nd	¹ Handle Side	m	Cathodic side

Energy conversion

Straub et al., Nature Energy 2016

Non linear effects: nanofluidic diode

Limits of the macroscopic hydrodynamic description

#limit 1: Size of object / size of the pore

#limit 2: fluctuation and thermal relaxation timescale

- Observations (experiments and simulations):
 - Limits of viscosity definition: 1 nm for water...
 - Other transport coefficients (diffusion): larger...

#1 Polymers: entropical cost of confinement

Oûkhaled et al., PRL 2012

#2 Limits of the continuum description: fluctuations

N molecules : fluctuations expected of the order of

Reasonable experimental threshold 10% (100 molecules):

 $L \sim 1 nm$

Water

Is continuum hydrodynamics valid for water in a:

a) 1 μ m channel?

b) 1 nm channel?

c) 0.1 nm channel?

Content

- 1) Introduction
- 2) Mass transport
- 3) Electrokinetics
- 4) Concentration gradients
- 5) Recent issues

Navier-Stokes equations for incompressible liquid

Momentum conservation

$$\rho \frac{\partial \vec{v}}{\partial t} + \rho \vec{v}. g \vec{radv} = \eta \Delta \vec{v} - g \vec{radP}$$

Mass conservation

 $div\vec{v} = 0$

MC Jullien's talk

Stokes equation for liquid at the nanoscale

Low Reynolds number, (quasi)-stationnary flows

$$0 = \eta \Delta \vec{v} - g \vec{radP}$$

$$div\vec{v} = 0$$

+ Boundary conditions

No-slip boundary condition : v_s=0

QUIZZ

The flow rate through a tube of radius R= 10 nm, length L=10 μm and under a pressure difference of 1 bar is:

a) 1 L/s
b) 1 μL/s (10⁻⁶ L/s)
c) 10 zL/s (10⁻²⁰L/s)

Measuring flow rate at the nanoscale: a difficult task!

#1 Direct measurement inside the channel

#2 Measurements of species transport at the exit of the channel

#3 Integrated measurements

Measuring flow rate at the nanoscale: a difficult task!

#1 Direct measurement inside the channel

• Diffusion/advection balance of dye repartition Q~50fL/min

Lee et al., PRL 2014

• Cross correlation spectroscopy Q~1pL/min

(*Mathwig et al. PRL 2012*) – no need of optical acess.

#2 Measurements of species transport at the exit of the channel

- Landau-squire jet
 - Punctual source, momentum conservation
- \circ Probed with optical tweezers : Q ~ 100 pL/min

(Laohakunakorn et al., Nanoletters 2013)-

 Fluorescent probe (Secchi et al., Nature 2016)

Particle translocation
 Zero mode wave guide
 (Auger et al. PRL 2014)

#3 Integrated measurements

• Coulter counting 100 fL/s Gadaleta et al., Nanotechnology 2015

• Capacitive flow rate sensor 100 fL/s *Sharma PhD Liphy 2017*

QUIZZ

1) Who wins?

2) Who fits expectations?

Boundary condition: $v_s \neq 0$

Numerical observations

 $v(z=0) \neq v_0$

Huang et al.PRL 2008

Boundary condition: $v_s \neq 0$

Experimental observations

• Surface force apparatus: Cottin-Bizonne et al. (2005)

• Confined Brownian movement: Joly et al. (2006)

Formalism: friction coefficient and slip length

Viscous stress

$$-\lambda v_T = \eta \frac{\partial v}{\partial z}$$

$$b = \frac{\eta}{\lambda}$$

$$b\left(\frac{\partial v}{\partial z}\right)_{z=0} = v_t$$

Navier 1823

Formalism: slip length

Effect of wettability

Slip length b

Slip length on textures

The case of carbon nanotubes

The case of carbon nanotubes

Fast Mass Transport Through Sub–2-Nanometer Carbon Nanotubes

Jason K. Holt,^{1*} Hyung Gyu Park,^{1,2*} Yinmin Wang,¹ Michael Stadermann,¹ Alexander B. Artyukhin,¹ Costas P. Grigoropoulos,² Aleksandr Noy,¹ Olgica Bakajin¹†

Bakajin et al., Science 2006

Water, ...

Membrane	Pore diameter (nm)	Enhancement over no-slip, hydrodynamic flow† (minimum)	Calculated minimum slip length‡ (nm)
DWNT 1	1.3 to 2.0	1500 to 8400	380 to 1400
DWNT 2	1.3 to 2.0	680 to 3800	170 to 600
DWNT 3	1.3 to 2.0	560 to 3100	140 to 500
Polycarbonate	15	3.7	5.1

In one single tube

Secchi et al., Nature 2016

Commensurability and Mango effect

QUIZZ

Order of magnitude of the slip length – 1 or 100 nm. a) Near a smooth hydrophobic surface

b) In a nanometric carbon nanotube

2) Does the slip length depends on the fluid velocity? Viscosity?

3) For CNNT, which ones are the most slippery? The large one or the small ones?

Ultrathin membranes:

$$Q = \frac{a^3}{3\eta} \Delta P$$

$$Q = \left(\frac{\pi R^4}{8L} \left(1 + 4\frac{b}{R}\right) + \frac{a^3}{3}\right) \frac{\Delta P}{\eta}$$

Consequence 1: Coulter counter

R=85 nm L=50 nm 13.2 fL/mbar vs 13.9 fL/mbar

Consequence 2: the case of aquaporins

Consequence 2: the case of aquaporins

Gravelle et al., PNAS 2013

From one to many pores

PhD C. Sempere

From one to many pores, enhanced permeability

PhD C. Sempere

Content

- 1) Introduction
- 2) Mass transport

3) Electrokinetics

- 4) Concentration gradients
- 5) Recent issues

Lengthscales in fluids

Coupling between *electrostatics* and fluid dynamics (*kinetics*)

• Charges at the liquid/solid interface, surface charge density noted $\boldsymbol{\sigma}$

$Si0H \to SiO^- + H^+$

 H^+ H^+ H^+ H^+ H^+ H^+

σ: number of charge per unit area,
 on the surface channel

Characteristic length 1

2*R* Number of bulk ions: $c_0 \pi R^2 L$ Number of surface ions: $\sigma 2\pi RL$

bulk dominates

 $R \gg \ell_{Du}$ $R \ll \ell_{Du}$

surface dominates

 ℓ_{Du} **Dukhin length**

From 0.1 nm to 10 μ m

Effect on channel conductivity

Saturation of the conductivity at low concentration

Effect on channel conductivity

$$I = \int_{S} e(c_{+}v_{+} - c_{-}v_{-})dS$$
$$v_{\pm} = v \pm e\mu_{\pm}\frac{\Delta V}{L}$$

$$I = e\left((\mu_{+} + \mu_{-})c + K_{surf}\right)h\frac{\Delta V}{L}$$

 $K_{surf} \sim K_{bulk} \times \frac{\ell_{Du}}{h}$

Surface contribtuion

Effect on channel conductivity

Karnik et al., Nanoletters 2007

Characteristic lengths 2-3

Between two ions in bulk: the Bjerrum length Electrostatic interaction / thermal agitation

Characteristic lengths 4

 \succ Screening length: the Debye length λ_{D}

$$\lambda_D = \sqrt{\frac{\epsilon kT}{2e^2c_0}}$$

1 mol/L, 0.3 nm

From Hartkamp et al., 2018

Coupled transport

- Electro-osmosis
- Streaming current
- Streaming current: energy recovery efficiency

Electroosmosis

F. Reuss, Mémoires de la Société des naturalistes de Moscou, v. 2 (1809).

Applying a potential will induce a flow!

Electroosmosis

Audry 2010

3) Electrokinetics

Plug flow

(a)

(b)

J.G. Santiago Stanford Micro Fluidics Lab.

Electroosmosis

- Charges at interfaces (ionic surfactants)
 ➤ Counter-ions in the vicinity of the interface
 (Electrical Double Layer: λ_D)
 c(z) = c₀e^{- ψ(z)}/_{kT}
- Tangential electric field: force on the locally non-neutral liquid $f(z) = -(c_+(z) c_-(z))e\nabla V$
- Entrainment of the liquid: stationnary Stokes plug flow

Surface charge density Hydrodynamic boundary condition

Electroosmosis / Poiseuille flow

Taylor-Aris dispersion Cf. J.-B. Salmon's talk

Electroosmosis in soap films

Electroosmosis in soap films

 $\delta \propto R_c \left(\frac{\eta v_{EO}}{\gamma}\right)^{2/3}$ $v_{EO} = -\epsilon \frac{\zeta}{\eta} \nabla V \qquad \qquad \zeta=30 \text{ mV}$

(analogous to Landau-Levich film)

O. Bonhomme, O. Liot

Electroosmosis in soap films

QUIZZ

1) Is an electro-osmotic flow:

- a) Plug like?
- b) Parabolic like?

2) Is it affected by slippage?

3) By the surface potential?

Coupled transport

- Electro-osmosis
- Streaming current
- Streaming current: energy recovery efficiency

Streaming current

 $I = -S\frac{\Delta P}{\tau}\epsilon^{\frac{\zeta}{2}}$

- Velocity profile
 v(r) induced by a difference of pressure (Poiseuille)
- Ion distribtuion profile near a charged surface *c(r)* induced by a surface charge

$$I = \int_0^R e(c_+(r) - c_-(r))v(r)2\pi r dr \qquad \text{(tube geometry)}$$

Onsager reciprocity

Streaming current

Streaming current

Glass capillary: R=1µm, L=2cm

Streaming current and electroosmosis

Glass capillary: R=1µm, L=2cm

Streaming current - harvesting energy

Zhang et al., Nature Nanotechnology, dec 2018

Coupled transport

- Electro-osmosis
- Streaming current
- Streaming current: energy recovery efficiency

 $P_{in} = Q\Delta p$

$$\alpha = S_{str}^2 Z_{ch} R_{ch} \qquad \qquad k = \frac{R_L}{R_{ch}}$$

Van der Heyden et al., Nanoletter 2006 Van der Heyden et al., Nanoletter 2007

$$\epsilon = \frac{P_{out}}{P_{in}} = \frac{\alpha k}{(1+k)(1+k-\alpha k)}$$

Streaming current: Energy recovery efficiency

- Large surface charge density, large bulk concentration
- = a lot of ions, good output (S_{str} is large)
- Charges = dissipation by conductance, bad output
- (*R_{ch}* is small)... nanofluidic diodes?

Van der Heyden et al., Nanoletter 2006 Van der Heyden et al., Nanoletter 2007

Content

- 1) Introduction
- 2) Mass transport
- 3) Electrokinetics
- 4) Concentration gradients
- 5) Recent issues

4) Concentration gradients

Back to basis: osmotic pressure

Osmotic energy $\omega \sigma \mu o \varsigma$: push

$\Delta G = -T\Delta S$

S = entropy in J/K it is always positive (second principle) !

Back to basis: osmotic pressure

S=k ln(Ω), Ω = numbers of states in a system

4) Concentration gradients

Leçons de physique expérimentale, Abbé Nollet, 1770

4) Concentration gradients

 $\Delta \Pi = R T \, \Delta C_{\rm sel}$

membrane semi-imperméable

Osmotic pressure \rightarrow mechanical pressure

Reversing osmosis for desalination

Selective membrane

concentrée

diluée

280 m water fall

Osmotic pressure \rightarrow mechanical pressure

$$\Delta (P - \Pi)$$
$$\Delta \Pi = 2k_B T \Delta c$$
$$P_{out} = Q \Delta \Pi \quad Q \sim R^4 !!!$$

Applications: PRO (Pressure Retarded Osmosis)

- ► Pore size: <0.6nm
 - Power density:
 - Maximal expected power: 7
- 1-2.7 W/m² 7-8 W/m²

Osmotic pressure Selective membranes: new strategies

Lee et al. Nature Nanotechnology 2014

1000 larger than for semipermeable membranes!

Osmotic pressure <u>Non-selective membranes</u>: interactions with surfaces

Anderson, Ann. Rev of Fluid Mech., (1989)

Osmotic pressure Non-selective membranes: interactions with surfaces

Diffusio-osmosis

Plug flow outside the Debye layer

Diffusioosmosis

Prepare concentration step

C. Lee, R. Fulcrand, P. Joseph, C. Cottin-Bizonne, C. Ybert

Non-selective $h > \lambda_D$

Diffusioosmosis

Diffusioosmotic current

$$I = \int_{h} e(c_{+}(z) - c_{-}(z))v(z)dz$$

$$I_{osm} = 2\pi R \sigma \frac{kT}{2\pi\ell_B} \left(1 - \frac{\ell_{GC}}{\lambda_D} sinh^{-1} \frac{\lambda_D}{\ell_{GC}} \right) \frac{\partial c}{c\partial x}$$

Expected power density with BN nanotubes: 1kW/m²

Comparison diffusioosmosis -electroosmosis

Streaming current

Osmotic current

$$I_{streaming} = -\pi R^2 \frac{\Delta P}{L} \epsilon \frac{\zeta}{\eta} \qquad I_{osm} = 2\pi R \sigma \frac{kT}{2\pi \ell_B} \left(1 - \frac{\ell_{GC}}{\lambda_D} sinh^{-1} \frac{\lambda_D}{\ell_{GC}} \right) \frac{\partial c}{c\partial x}$$

$$\frac{I_{osm}}{I_{str}} \simeq \frac{kT\Delta c}{\Delta P} \frac{\lambda_D}{R}$$

kT Δ c=50 bars !! >> Δ P

Comparison diffusioosmosis -electroosmosis

Streaming current

$I_{str} \sim S \sim R^{2}$	$_r\sim \lambda$	$\tilde{r} \sim$	R^2
-----------------------------	------------------	------------------	-------

Osmotic current

 $I_{osm} \sim R$

Channel density $N \sim A/S$

 $I_{str,tot} \sim A/S \times S \sim A$

$$I_{osm,tot} \sim A/S \times R \sim A/R$$

Interesting for small devices!

QUIZZ

1) Do we need selective membrane to see effects of salinity difference?

2) What is the most efficient: diffusioosmosis or electroosmosis?

3) Do you think that the two can be coupled?

Content

- 1) Introduction
- 2) Mass transport
- 3) Electrokinetics
- 4) Concentration gradients
- 5) Recent issues

4) Recent issues

Nanofluidic diodes

Nanofluidic osmotic diode Picallo et al., PRL 2013

Non-symmetric Joule heating

Jubin et al., PNAS 2016

4) Recent issues

Thermoosmosis

Giant Thermoelectric Response of Nanofluidic Systems Driven by Water Excess Enthalpy

Li Fu, Laurent Joly,^{*} and Samy Merabia[†] Univ Lyon, Univ Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France

(Received 21 April 2019; revised manuscript received 11 July 2019; published 24 September 2019)

Miralles et al., PRL 2014

NECTAR Project

THANK YOU

QUIZZ: who's who? Laurent Joly Cécile Cottin-Bizonne Christophe Ybert Oriane Bonhomme

