Acoustofluidics

1) Using radiation pressure

Philippe Marmottant

David Rabaud, Pierre Thibault, Q. Tran, Flore Mekki-Berrada, Thomas Combriat, Nicolas Bertin, Jean-François Louf, Maxime Harazi Laboratoire Interdisciplinaire de Physique (LIPhy) Grenoble

European Research Council

Context: digital microfluidics

Diluted droplets / bubbles follow the flow ...

Ismagilov group 2003

... or induce traffic jams

Link 2004

How to use acoustic forces to control objects without contact?

Waves...

Acoustic wave definition: small disturbance around equilibrium of

- Pressure, $p=p_0+p_1(x,t)$
- Velocity, $v = v_0 + v_1(x,t)$

Propagating at speed of sound: $c = (K/\rho)^{1/2}$ with fluid compressibility $K = \rho (\partial p / \partial \rho)_{S=col}$

How can sound exert forces and motion?

Outline

1) Radiation pressure

a) on interfacesb) on particles, tweezersc) on bubbles

2) Acoustic streaming

- a) Quartz wind
- b) near boundaries
- c) near bubbles

1) Radiation pressure

- Exists in acoustics and in optics (laser forces, as in optical tweezers)
- **Peculiarity in acoustics** radiation pressure can be negative

a) On fluid interfaces

Origin: change of momentum at reflection

Case of optics

• Acoustics

Reflection R= $(Z_1 - Z_2)^2 / (Z_1 + Z_2)^2$

Wave Intensity is $I=P_A^2/2Z$ (W/m²) with peak acoustic pressure P_A

Wave momentum

Flux of momentum results in a pressure $P_{rad} = I/c \longrightarrow C$

Reflection on an interface

- incident wave:
- reflected wave:

Total

along +x

• transmitted wave:

$$P_{rad}^{rad} = I/C_1$$

 $P_{rad}^{reflected} = I_R/C$

D incident – 1/o

 $P_{rad} = I\left(\frac{1+R}{C_1} - \frac{1-R}{C_2}\right)$

$$P_{rad}^{transmitted} = -I_T/C_2$$

$$\begin{array}{c}
c_1 \\
c_2 \\
\hline
I_R \\
I_R
\end{array}$$

Prad

• P_{rad} can be negative (e.g. if $c_2 << c_1$)

momentum <pv>

• Can be independent of the direction of propagation if exchanging $c_2 <->c_1$ changes sign of P_{rad}

b) On solid particles: acousto-phoresis

• Mie regime, $R >> \lambda$

 $F_{rad} = S I/c$ with $S = \pi R^2$

• Rayleigh regime, $R \ll \lambda$ (microfluidics)

$$F_{rad} = \Phi_{prop} (R/\lambda)^4 S I/c$$

King 1934

 $\Phi_{\rm prop}$ depends on the particle properties

Yosioka 1955

In practice:

inject sound in a microsystem with surface acoustic waves

a tool to push particles/droplets

Franke 2009 Lab on a Chip

our lab unpublished

standing waves/propagating waves

• Mie regime, $R >> \lambda$

Propagative: $F_{rad} = S I/c$

• Rayleigh regime, $R \ll \lambda$ (microfluidics)

Propagative: $F_{rad} \sim (R/\lambda)^4 S I/c$

standing waves, examples

acoustic tweezers:

Principle: phase shift on one electrode

Standing wave that drifts because the left electrode emits

$$\cos\left(2\pi Ft + \int_{0}^{t} 2\pi \Delta F(\tau) d\tau\right)$$

controled phase shift

Holographic tweezers

Marzo Nature Comm 2015

c) On compressible bubbles:

resonance and Bjernes forces

Resonance of bubbles

XVI. On Musical Air-Bubbles and the Sounds of Running Water. By M. MINNAERT, Sc.D., Heliophysical Institute of the Physical Laboratory, Utrecht*.

PHYSICISTS have hardly ever investigated the sounds of running water. As a matter of fact we know very little about the murmur of the brook, the roar of the cataract, or the humming of the sea.

(Philosophical Magazine, 1933)

bubble = harmonic oscillator

mass : dispaced liquid stiffness : gas compressiility

Minnaert formula

$$f \times R \simeq 3 \,\mathrm{m/s}$$

3 kHz for 1 mm bubbles

25

Sound of rain droplet: due to a bubble!

Pumphrey 1989

The bubble piano

Valentin Leroy, MSC, Paris 7

Playing "Ode to Joy" with the bubble piano

Biomedical applications

Contrast agents for ultrasound echography

Bracco Research

• Sonoporation Near membranes enhanced permeabilisation

Targeted delivery

Taniyama et al Circulation 105 (2002)

Excitation at large amplitude, f << f_{res}

Sonoluminescence

Sonofusion?

Taleyarkhan 2002

c) On compressible bubbles:

resonance and Bjernes forces

The Bjerknes force

• Bjerknes force: due to large volume oscillation at resonance, in a pressure gradient

$$\begin{aligned} \mathcal{F}_{\text{Bjerknes}} &= \left\langle -\mathcal{V}(t) \ \nabla \mathcal{P}_{\text{Acoustic}}(t) \right\rangle \\ &= \left\langle -\left[\mathcal{V}_0 + \delta \mathcal{V} \cos(\omega t + \varphi) \right] \left[\nabla \mathcal{P}_{\text{A}} \cos(\omega t) \right] \right\rangle \\ &= -\delta \mathcal{V} \ \nabla \mathcal{P}_{\text{A}} \cos \varphi \end{aligned}$$

Bjerknes 1906

Set-up to induce Bjerknes forces

vibrating glass rod

stand wave rod vibration

deviations With a change of the standing wave pattern $\vec{\nabla} P_{Acoustic}$ f = 147 kHz 0 0 $\vec{\nabla} P_{Acoustic}$ f = 151 kHz 0 0

Rabaud, Thibault, Raven, Hugon, Lacot and Marmottant Phys. Fluids 2011

Example of applications of Bjerknes forces

• Switch droplets containing a bubble

Many bubbles: Self-organisation

Ultrasonic "ballet" at larger amplitudes.

Bubbles keep their distance...

acoustically-bound crystals

...and acoustically-bound crystals are formed.

Rabaud, Thibault, Mathieu and Marmottant Phys. Rev. Lett. 2011

Interaction through surface acoustic waves, on PDMS!

Side view of a pulsating bubble

Outline

1) Radiation pressure

a) on interfacesb) on particles, tweezersc) on bubbles

2) Acoustic streaming

- a) Quartz wind
- b) near boundaries
- c) near bubbles

2) Acoustic streaming

Navier-Stokes equation

$$\rho \frac{\partial \mathbf{V}}{\partial t} = -\nabla \rho + \eta \nabla^2 \mathbf{V} - \rho (\mathbf{V} \cdot \nabla) \mathbf{V}$$
Inertia

Consequences of inertia

- 1) non-reversibility of fluid (ex: flamme)
- 2) turbulence
- 3) non-linear, steady forcing on average:

Navier-Stokes averaged over time

$$\mathbf{0} = -\nabla \left\langle \rho \right\rangle + \eta \nabla^2 \left\langle \mathbf{v} \right\rangle - \left\langle \rho \left(\mathbf{v} \cdot \nabla \right) \mathbf{v} \right\rangle$$

steady streaming

Reynolds stress

$$\mathbf{F}_{\text{Reynolds}} = \left\langle -\rho(\mathbf{v}.\nabla)\mathbf{v} \right\rangle$$

quadratic

a) Quartz wind

Attenuated wave

$$\mathbf{v} = \mathbf{v}_{A} \exp(-\alpha x) \cos(\omega t - kx)$$
$$\mathbf{f}_{\text{Reynolds}} = \frac{1}{2} \rho \alpha v_{A}^{2} \exp(-2\alpha x) \mathbf{e}_{x}$$

Attenuation length in water $\alpha^{-1} = 50 \text{ m.MHz}^2 / f^2$ In air $\alpha^{-1} = 1 \text{ m.MHz}^2 / f^2$

Botton

b) near a wall

A very well known example of acoustic streaming: the Kundt tube (1866)

Loudspeaker

Reynolds stresses are important in the Stokes oscillatory boundary layer

b) near a wall: vibrating cylinder

Tatsuno 1980

Gentilles oscillations de la bulle $\epsilon << 1$

- rayon $r = \varepsilon a \cos(\omega t)$
- centre $z = \varepsilon' a \cos(\omega t \phi)$

Streaming

 $< u_2 > \sim \epsilon s' a \omega \sin \phi$

E Translete d'afficher Lander Translette d'afficher Lander Tran

Marmottant 2003

Microfluidic set-up: flattened and anchored bubbles

Two bubbles vibrating: passionate streaming!

Acoustic streaming:

predictions from translation+oscillation vibrations

 $\Psi_{L} = \Psi_{L}^{\text{bubble 1}} + \Psi_{L}^{\text{bubble 2}}$

• Microfluidic "pinball"

• Microfluidic "pinball"

Innerspace & Cuber-Peters Production Starring Dennis Quaid Martin Short Meg Ryan Kevin McCarthy Director of Photography Andrew Laszlo, A.s.c. Production Designer James H. Spencer Music by Jerry Coldsmith co-Produced by Chip Proser Co-Executive Producers Frank Marshall and Kathleen Kennedy Executive Producers Steven Spielberg, Peter Guber and Jon Peters Story by Chip Proser screenplay by Jeffrey Boarn and Chip Proser Produced by Michael Finnell Directed by Joe Dante Produced by Michael Finnell Directed by Joe Dante Produced by Michael Record. Carters 4 201

Artificial microswimmers

Applications

- Drug delivery in capillary vessels
- Micromixing

Innerspace, 1987

Idea: use a resonant bubble as a motor

Resonance frequency given by the Minnaert formula: $f \times R \simeq 3 \,\mathrm{m/s}$

- Strong amplitude of vibration at resonance
- Issue: dissolution of the gas, especially at small scales!

How to protect a bubble from dissolving? partial encapsulation in 3D microfabricated shells

Streamlines

Swimmer!

Video Jean-François Louf, f=340 kHz

Cubic bubbles

Water-air interfaces

Conclusion

- Acoustics: easy to implement
- Strong radiation forces on objects: I/c when larger than λ I/c (R/λ)⁴ for objects smaller I/c (R/λ)¹ for standing waves
- Forces on water itself: acoustic streaming
- Care has to be taken to focus the energy (use of high frequency, resonances, bubbles)

